动态规划

动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。

核心问题是穷举。因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值。

  • 首先,动态规划这类问题存在「重叠子问题」,如果暴力穷举的话效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算
  • 一定会具备「最优子结构」,才能通过子问题的最值得到原问题的最值

另外,虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,只有列出正确的「状态转移方程」才能正确地穷举。但是在实际的算法问题中,写出状态转移方程是最困难的,这里提供一个思维框架,辅助思考状态转移方程:

明确 base case -> 明确「状态」-> 明确「选择」 -> 定义 dp 数组/函数的含义

1
2
3
4
5
6
7
# 初始化 base case
dp[0][0][...] = base
# 进行状态转移
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 求最值(选择1,选择2...)

回溯算法

解决一个回溯问题,实际上就是一个决策树的遍历过程。你只需要思考 3 个问题:

1、路径:也就是已经做出的选择。

2、选择列表:也就是你当前可以做的选择。

3、结束条件:也就是到达决策树底层,无法再做选择的条件。

回溯算法的框架:

1
2
3
4
5
6
7
8
9
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择

其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」,特别简单。